Researchers in Shanghai Jiao Tong University in China have developed a solar mount for Floating Photovoltaics that with improved stability and dynamic responses compared to conventional semi-submerged floating solar mount.
The research team described the floating solar mount as a pontoon-truss platform composed of four pontoons and a steel truss connected by soft ropes. It also features an angle range of 0 degrees to 14 degrees, which reportedly offers "exceptional" stability. "The four pontoons are floating on the free surface and a square zone is enclosed," the scientists added, noting that this design is intended to increase installation capacity while reducing mooring costs in the Floating Photovoltaics.
The system also includes steel frames and deck beams. "The steel truss is fabricated by joining horizontal and vertical members with the pontoons, yielding a design that is both lightweight and effective in reducing wave run-up," the group said. "The deck beams are then mounted on the topside, creating space for PV panel installation."
The performance of the PV Mounting System was tested through a series of experiments and compared to that of a semi-submersible foundation containing four immersed horizontal pontons and four semi-submerged vertical columns.
This analysis showed that the semi-submersible system has a "marginal" advantage in the maximum restoring moment, which defines the rotational force that acts in the opposite direction of a rotating body, but it can achieve this only at heel angles over 20 degrees. By contrast, the pontoon-truss system was found to provide optimal stability within 10 degrees.
The system was also found to have a "superior ability" to resist capsizing and to respond rapidly to wave run-up. "Both experimental and numerical results identify that this pontoon-truss design is feasible in sea environment and keeps away from green water and negative airgap, however, this conclusion is obtained from scaled basin test and ideal simulation," the researchers stated.